Sumber: http://eltelu.blogspot.com/2012/09/cara-membuat-tab-menu-horizontal.html#ixzz2BUn2TQsY




Cari Misteri

rumitnya membuat Prosesor


Spoiler for 1.Sand (pasir):

Pasir - terutama Quartz - memiliki persentase tinggi dari Silicon dalam pembentukan Silicon dioksida (SiO2) dan merupakan bahan dasar untuk produksi semikonduktor.
Pasir - sekitar 25% masa Silicon yang merupakan senyawa kedua terbanyak - setelah oksigen - di muka bumi.

Spoiler for 2.Silikon Cair:

Silikon dimurnikan dalam tahap berlapis untuk akhirnya nencapai kualitas produksi yang disebut Electronic Grade Silicon (EGS). EGS mungkin hanya mengandung sebuah atom asing setiap satu triliun atom Silikonnya. Pada gambar di bawah ini Anda bisa lihat bagaimana sebuah kristal besar tumbuh dari silikon cair yang dimurnikan. Hasilnya adalah kristal tunggal yang disebut Ingot. Silikon cair - skala: level wafer (~300mm / 12 inch)

Spoiler for 3.Kristal Silikon Tunggal (Ingot):

Sebuah ingot dibuat dari Electronic Grade Silicon. Sebuah ingot memiliki berat sekitar 100 kilogram (220 pound) dan memiliki kemurnian Silicon 99.9999%. Mono-crystal Silicon Ingot -- scale: wafer level (~300mm / 12 inch)

Spoiler for 4.Pengirisan Ingot:

Ingot kemudian diiris menjadi disc-disc silikon individual yang disebut wafer. Ingot Slicing -- scale: wafer level (~300mm / 12 inch)

Spoiler for 5.Wafer:


Wafer-wafer ini dipoles sedemikian rupa hingga tanpa cacat, dengan permukaan selembut kaca cermin. Intel membeli wafer-wafer siap produksi itu dari perusahaan pihak ketiga. Process rumit 45nm High-K/Metal Gate oleh Intel menggunakan wafer dengan diameter 200 milimeter. Saat Intel mulai membuat chip-chip, perusahaan ini mencetak sirkuit-sirkuit di atas wafer 50 milimeter. Dan untuk saat ini menggunakan wafer 300mm, yang menghasilkan penghematan biaya per-chip. Wafer -- scale: wafer level (~300mm / 12 inch)

Spoiler for 6.Mengaplikasikan Photo Resist:

Cairan (warna biru) yang di tuangkan di atas wafer saat diputar adalah sebuah proses dari photo resist yang sama seperti yang kita kenal di film untuk fotografi. Wafer diputar selama tahap ini untuk membuatnya sangat tipis dan bahkan mengaplikasikan layer photo resist. Applying Photo Resist -- scale: wafer level (~300mm / 12 inch)

Spoiler for 7.Exposure:
1.
Hasil dari photo resist diekspos ke sinar ultraviolet (UV. Reaksi kimianya ditrigger oleh tahap pada proses tersebut, sama dengan apa yang terjadi pada material film pada sebuah kamera saat Anda menekan tombol shutter. Hasil dari photo resist yang diekspos ke sinar UV akan bersifat dapat larut. Exposure diselesaikan menggunakan mask yang berfungsi seperti stensil dalam tahap proses ini. Saat digunakan dengan cahaya UV, mask membentuk pola-pola sirkuit yang bervariasi di atas tiap layer dari mikroprosesor. Sebuah lensa (di tengah) mengurangi image dari mask. Sehingga yang dicetak di atas wafer biasanya adalah empat kali lebih kecil secara linier daripada pola-pola dari mask. Exposure -- scale: wafer level (~300mm / 12 inch)
2.
Meskipun biasanya ratusan mikroprosesor bisa dihasilkan dari sebuah wafer tunggal, cerita bergambar ini hanya akan fokus pada sebuah bagian kecil dari sebuah mikroprosesor, yaitu pada sebuah transistor atau bagian-bagiannya. Sebuah transistor berfungsi seperti sebuah switch, mengendalikan aliran arus listrik dalam sebuah chip komputer. Peneliti-peneliti di Intel telah mengembangkan transistor-transistor yang sangat kecil sehingga sekitar 30 juta transistor dapat diletakkan pas di kepala sebuah peniti. Exposure -- scale: transistor level (~50-200nm)

Spoiler for 8.Membersikan Photo Resist:

Photo resist yang lengket dilarutkan sempurna oleh suatu pelarut. Proses ini meninggalkan sebuah pola dari photo resist yang dibuat oleh mask. Washing off of Photo Resist -- scale: transistor level (~50-200nm)

Spoiler for 9.Etching (Menggores):

Photo resist melindungi material yang seharusnya tidak boleh tergores. Material yang ditinggalkan akan digores (disketch) dengan bahan kimia. Etching -- scale: transistor level (~50-200nm)

Spoiler for 10.Menghapus Photo Resist:

Setelah proses Etching, photo resist dihilangkan dan bentuk yang diharapkan menjadi terlihat. Removing Photo Resist -- scale: transistor level (~50-200nm)

Spoiler for 11.Mengaplikasikan Photo Resist:

Terdapat photo resist (warna biru) diaplikasikan di sini, diekspos dan photo resist yang terekspos dibersihkan sebelum tahap berikutnya. Photo resist akan melindungi material yang seharusnya tidak tertanam ion-ion. Applying Photo Resist -- scale: transistor level (~50-200nm)

Spoiler for 12.Penanaman Ion:

Melalui seuatu proses yang dinamakan "ion implantation" (satu bentuk proses yang disebut doping), area-area wafer silikon yang diekspos dibombardir dengan "kotoran" kimia bervariasi yang disebut Ion-ion. Ion-ion ini ditanam dalam wafer silikon untuk mengubah silikon pada area ini dalam memperlakukan listrik. Ion-ion ditembakkan di atas permukaan wafer pada kecepatan tinggi. Suatu bidang listrik mempercepat ion-ion ini hingga kecepatan 300.000 km/jam. Ion Implantation -- scale: transistor level (~50-200nm)

Spoiler for 13.Menghilangkan Photo Resist:

Setelah penanaman ion, photo resist dihilangkan dan material yang seharusnya di-doped (warna hijau) memiliki atom-atom asing yang sudah tertanam (perhatikan sekilas variasi warnanya). Removing Photo Resist -- scale: transistor level (~50-200nm)

Spoiler for 14.Transistor Sudah Siap:

Transistor ini sudah dekat pada proses akhirnya. Tiga lubang telah dibentuk (etching) di dalam layer insulasi (warna magenta) di atas transistor. Tiga lubang ini akan terisi dengan tembaga yang akan menghubungkannya ke transistor-transistor lainnya. Ready Transistor -- scale: transistor level (~50-200nm)

Spoiler for 15.Electroplanting:
1.
Wafer-wafer diletakkan ke sebuah solusi sulfat tembaga di tahap ini. Ion-ion tembaga ditanamkan di atas transistor melalui proses yang disebut electroplating. Ion-ion tembaga bergerak dari terminal positif (anoda) menuju terminal negatif (katoda) yang dipresentasikan oleh wafer. Electroplating -- scale: transistor level (~50-200nm)

2.
Pada permukaan wafer, ion-ion tembaga membentuk menjadi suatu lapisan tipis tembaga. After Electroplating -- scale: transistor level (~50-200nm)

Spoiler for 16.Pemolesan:

Material ekses dari proses sebelumnya di hilangkan. Polishing -- scale: transistor level (~50-200nm)

Spoiler for 17.Lapisan Logam:

Lapisan-lapisan metal dibentuk untuk interkoneksi (seperti kabel-kabel) di antara transistor-transistor. Bagaimana koneksi-koneksi itu tersambungkan ditentukan oleh tim desain dan arsitektur yang mengembangkan funsionalitas prosesor tertentu (misal Intel® Core™ i7 Processor). Sementara chip-chip komputer terlihat sangat flat, sesungguhnya didalamnya memiliki lebih dari 20 lapisan yang membentuk sirkuit yang kompleks. Jika Anda melihat pada pembesaran suatu chip, Anda akan menemukan jaringan yang ruwet dari baris-baris sirkuit dan transistor-transistor yang mirip sistem jalan raya berlapis di masa depan. Metal Layers -- scale: transistor level (six transistors combined ~500nm)




sumber :http://www.kaskus.us/showthread.php?t=2824553

0 comments:

Posting Komentar